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Dynamic fragmentation of a two-dimensional brittle material with quenched disorder

Jan Åstro¨m, Markku Kellomäki, and Jussi Timonen
Department of Physics, University of Jyva¨skylä, P.O. Box 35, FIN-40351 Jyva¨skylä, Finland

~Received 14 May 1996!

Fragmentation of a two-dimensional brittle material caused by a rapid impact has been analyzed. Computer
simulations together with simple arguments are used to obtain a qualitative understanding of crack formation,
which is then used to derive an exponential fragment size distribution valid in the large fragment size limit. In
the limit of small fragments this distribution is solved numerically, and it is found to obey a scaling law with
the exponent21.5. These results suggest that two different mechanisms are operative in the fragmentation
process: branching of propagating cracks determines the small fragment size limit, and merging of the nucle-
ated cracks determines the large size limit. The point of crossover between these two regimes is also found to
obey a scaling law.@S1063-651X~97!08204-4#

PACS number~s!: 46.10.1z, 46.30.Nz, 05.90.1m, 91.30.2f
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During the last decade much effort has been devote
obtaining a better understanding of the effect of disorder
the fracture of materials@1#. In most cases the model consi
ered has been a lattice network that includes some so
stochastic disorder. Fracture formation has usually b
simulated in these models by repeatedly finding the ela
equilibrium of a strained network, and removing at each s
the most strained lattice bond~s! ~a ‘‘quasistatic fracture’’!.
In many natural phenomena and technological proces
however, strain is applied so fast that the material will ne
reach equilibrium. This is true in particular for all types
explosions and rapid impacts. In such cases, elastic or s
waves appear, and damage is caused by material and
dependent strains~a ‘‘dynamic fracture’’!. In the quasistatic
case a single crack dominates the fracture process@2# and the
sample is usually cleaved. In the dynamic case, howe
several cracks propagate simultaneously and a fragment
distribution with some rather remarkable features app
@3–9#.

The fragment size distribution resulting from a rapid im
pact has been observed@3–7# to follow a scaling law in the
small size limit. The measured scaling exponents range f
1 to 1.7, depending on the shape of the fragmented ob
@3#, and it has been suggested by Oddershedeet al. @3# that
the scaling law is a sign of self-organized criticality. Gilvar
@4#, and Klimpel and Austin@10# investigated a model base
on the idea of randomly located preexisting defects that
as nucleation centers for cracks. This model reproduces
power law form in the small fragment limit, and it also pr
vides good fits to some experimental data in the large fr
ment limit. A recent model by Marsili and Zhang also repr
duces the power law under some rather general condit
@5#. Similar power laws were found by Hernandez and H
rmann@6# and by Kun and Herrmann@9# using more or less
realistic numerical models. A decrease faster than that of
scaling law was observed by Oddershedeet al. @3# and by
Kun and Herrmann@9# in the large fragment limit. The na
ture of the distribution in this limit, and the crossover b
tween the two regimes has, however, remained unclarifie

In this paper we show that a model based on ideas sim
to those of Gilvarry@4# explains well the fragment size dis
tribution of the fractured network in thelarge size limit. In
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the small size limit we find, as in almost all studies done
fragmentation, that the fragment size distribution follows
scaling law. The scaling exponent, however, is different fro
the one given by the Gilvarry model. We argue that the fra
ment size distribution is governed in the small size limit
the dynamics ofsingle cracks @11–16#, while in the large
size limit it is governed by themergingof cracks.

The model network we have chosen to analyze is that
square lattice in which the lattice bonds have the ela
properties of beams with a square cross sectionw2, length
l , and Young’s modulusE. Massesm are placed on each
lattice site and the bonds are assumed to be massless@11,12#.
The equations of motion can be written@17# in the form
MÜ52KU, whereM is a diagonal matrix containing th
masses,K is the stiffness matrix, andU is a vector contain-
ing the displacements of the nodes. This equation is sol
numerically by discretization and iteration of time steps.
avoid nonlinear equations of motion all displacements
assumed to be small in comparison with the length of
bonds. A bond will break when its axial strain exceeds
predefined limit. An elastic wave is applied at the left boun
ary of the network in such a way that the lattice sites at t
boundary are forced to move in thex direction as
A0sin

2(vt) when time t evolves from 0 top/v. For
t.p/v these sites are constrained to remain at their orig
positions. At the right boundary the sites can move witho
constraints. Periodic boundary conditions are imposed in
y direction.

Disorder is introduced in the network by slightly movin
all the lattice sites in a random fashion, and adjusting
lengths of the bonds so that no stress appears. Since no s
moved by more than a half of the length of the lattice bond
any direction, the induced disorder is weak in the sense
Hansenet al. @2#. In order to avoid the artifacts caused by
particular direction of wave propagation, two different dire
tions were used in the simulations: parallel to the horizon
bonds~direction I!, and diagonally to the bonds~direction
II !. In contrast with the case of quasistatic load, dynam
fracture is a local phenomenon in the sense that the frac
of a bond will only depend on the stress in the immedi
neighborhood of the bond. Consequently, finite size effe
should not be as prominent as in the case of static load,
4757 © 1997 The American Physical Society
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results obtained for a large lattice should hold well in t
thermodynamic limit. The absence of large finite size effe
was also confirmed by simulations.

In the present model fracture is instantaneous and
chanical contact between fragments is neglected. This m
that the amplitude of the elastic signal will decrease dra
cally when a crack is formed. Consequently, fracture will
located close to the edge of the lattice network~Fig. 1!. This
type of fracture is called abrasion@7# and in experiments it
appears when the energy input is not too far above the l
at which fracture first appears. In order to obtain a qualitat
understanding of this type of fracture, we first have to stu
the dynamics of a single propagating crack. As already m
tioned above, we expect that a single crack behaves q
differently for quasistatic fracture and dynamic fracture. W
defineX andY to be the width and height, respectively,
the smallest box with sides parallel to thex andy axis, which
contains an entire crack. In the dynamic case, fracture
pends only on the local stress close to the point where bo
break, which means that we expectX to grow, on the aver-
age, proportional toY. In the quasistatic case, fracture
dominated by stress enhancement at the tip of the crack.
enhancement will increase with the height of the crack, a
Y will grow increasingly faster thanX. This leads to a
power-law relation betweenX andY @18,19#

Y5aXz, ~1!

with z'3/2 anda a positive constant. We have simulated t
evolution of single cracks with the dynamic model describ
above, and the results of these simulations are shown in
2. The best fits to the data by Eq.~1! give z'1.06 and 1.03
for direction I and direction II, respectively, as define
above. In other words, the simulations support our assu
tion thatX is proportional toY.

As illustrated by Fig. 3, a simulated fracture process
gins with cracks being nucleated at independently loca
sites close to the left edge of the network. From these s

FIG. 1. Fracture paths in a disordered network of size 40340.
The impulse has propagated in direction II. Thick lines indic
broken bonds.
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cracks begin to propagate and will soon begin to merge. It
also evident from Fig. 3 that merging of cracks causes t
height Y of a crack to grow very fast while the widthX
remains practically unaltered. We thus model the individu
cracks as similar cracks initiated at random locations. The
cracks are assumed to grow independently of each other s
that for each single crackY5aX. When two cracks merge
their heights add up~resulting in exponential growth: growth
rate is proportional to height!, while the total width of the
new compound crack is more or less that of its constituen
The growth rate of the height of a crack with this kind o

FIG. 2. Y as a function ofX for the two propagation directions
when only one crack was created. The amplitudes were 0.15~direc-
tion I! and 0.18~direction II! in lattice units. The fitted lines are
given by Eq.~1! with z51.03 and 1.06, respectively. TheX and
Y axis are in lattice units.

FIG. 3. Snapshot of a fracture process after~a! 1200,~b! 1600,
~c! 2000, and~d! 2400 time steps. Notice periodic boundary condi
tions in the vertical direction. No segments were broken after 24
time steps.
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merging included is therefore influenced by two factors:
growth rate of the height of a single crack, and the heigh
the growing crack multiplied by the density of cracks. It c
thus be expressed in the form

dY

dX
5a~11bY!, ~2!

whereb describes the density of initiated cracks. The so
tion to Eq.~2! is given by

Y5S 1b1cDeab~X21!2
1

b
, ~3!

wherec is the value ofY at X51.
Evolution of multiple cracks was also simulated in t

network model of elastic beams described above, and
results of these simulations together with the correspond
fits by Eq.~3! are shown in Fig. 4. Notice that the same da
for A50.15 ~direction I! andA50.18 ~direction II!, appear
in Fig. 2 in a log-log scale, while a semilogarithmic scale
used in Fig. 4. In the fitsa varied from 1.2 to 1.45 for
direction II, and from 0.8 to 1.0 for direction I. This mean
that the width and height of a single crack grow with a
proximately the same velocity. As expected,b, which de-
scribes the density of initiated cracks was found to incre
with the amplitude of the impact:b50.06,0.29,0.42,0.56 fo
the amplitudes 0.15,0.18,0.24,0.30, respectively, w
waves propagated in direction I, andb50.07,0.15,0.31,0.36
for A50.18,0.21,0.24,0.27, respectively, when waves pro
gated in direction II. Notice thatb vanishes at a nonzer
amplitude: for small amplitudes only elastic waves app
and no cracks are created. To check if the fitted values of
parameterb really correspond to the amount of initiate
cracks, we calculated the number of cracks directly from
simulation results. It is, however, difficult to estimate t
exact number of nucleated cracks as propagating cra
sometimes make small jumps and thereby, for a mom
create a new crack at the crack tip@see, e.g., Fig. 3~a!, where
the upper crack has just made a small jump#. To count the
number of nucleated cracks, we therefore estimate the
ment in time when almost all cracks are initiated, but cra
merging has not yet become dominant. At this moment
then simply count the number of existing cracks. Th
method will slightly underestimate the number of initiat
cracks as the merging of cracks and the creation of n
cracks to some extent overlap in time. This effect is stro
for high amplitudes when the cracks are nucleated cl
to each other, which causes cracks to merge quickly.
direction II and networks of size 40340 we obtained an
average of 1.7,5.5,8.9,9.4 cracks for the amplitud
A50.18,0.21,0.24,0.27, respectively. This should be co
pared with 2.8,6.0,12.4,14.4 cracks obtained from the fit
b values for the same amplitudes.

Since, for any individual crack,X is proportional toY, we
would expect that for a single propagating crack both
these quantities are linear functions of time. IfX5ct1d, Eq.
~3! can be used to obtain theY of merging cracks as a non
linear function of time. In Fig. 5 we show linear fits to sim
lated X(t) and the resulting fits to theY(t) as calculated
from Eq.~3! with the fittedX(t). It is evident from this figure
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thatX grows linearly with time, and that Eq.~3! excellently
predicts the time dependence ofY.

The results reported so far prove that the fracture proce
can be understood in rather simple terms. Cracks origina
from randomly located ‘‘weak’’ bonds. They propagate in
dependently of each other with, on the average, a const
velocity in thex and y directions until they encounter an-
other crack.

This simple picture can now be used to calculate the e
perimentally accessible distribution of fragment size
@3–10#. It is evident from Fig. 3 that large fragments are
essentially created between the points where cracks are
tiated. Small fragments are created by branching of crac
To calculate the distribution of the large fragment sizes w
again set tob the fraction of lattice bonds on which cracks
are simultaneously created. If we further assume that t
length of the fragments is proportional to their width, th
densityn(r ) of fragments of linear sizer is given by

FIG. 4. Y as a function ofX for ~A! direction I, and~B! direc-
tion II. The amplitudes of the impulses were~A!
0.15,0.18,0.21,0.24,0.27, and~B! 0.15,0.18,0.24,0.30. The lines are
best fits by Eq.~3!. TheX andY axis are in lattice units.
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n~r !}b~12b!r21. ~4!

This means that the distributionn(s) of fragment areass for
large fragments is given by

n~s!}exp@ ln~12b!~As/p21!#/As, ~5!

wherep is the proportionality factor between the widths and
the lengths of the created fragments. From Fig. 3p can be
roughly estimated to bep'0.3. The distribution of fragment
sizes was simulated by the randomized network of elast
beams, and the resulting cumulative distribution

N~s!5E
s

`

n~s!ds}exp@ ln~12b!~As/p21!#

is shown in Fig. 6 for two different amplitudes. The fitted
lines correspond to fractionsb50.39 andb50.31 of broken
bonds for the amplitudesA50.28 and 0.25, respectively. The

FIG. 5. X andY as functions of time. Straight lines are fits to
simulatedX. The other full lines@for Y(t)# are given by Eq.~3!
with the fittedX(t). Results are shown for amplitudes 0.21 and
0.27.

FIG. 6. Semilogarithmic plot ofN(s) for amplitudes 0.25~upper
data points! and 0.28~lower data points!. The straight lines are
given by Eq.~5! with b50.31 and 0.39, respectively.
ic

simulated distributions were found to excellently follow that
of Eq. ~5!, except for small and the very largest fragments.
For the largest fragments the deviation is obviously due to
finite size effects. It has been observed@3–10# in the small
size limit in particular that fragment size distributions uni-
versally follow a scaling law. In this limit, Eq.~5! gives
n(s)}s20.5. By plotting the data of Fig. 6 on a log-log scale
in Fig. 7 it becomes evident that

n~s!}s21.5 ~6!

in the small size limit, which is clearly different from Eq.
~5!. This discrepancy means that the mechanism behind th
distribution Eq.~5!, which seems to excellently explain the
simulated distribution of large size fragments, does not
dominate the production of small size fragments. So there
must be some other mechanism that governs the formation o
these small fragments. An obvious mechanism for this task is
the branching of propagating cracks~hints of this can be seen
in Fig. 3!. It is also interesting to notice that21.5 is the

FIG. 8. Log-log plot ofC(A) for the data of Fig. 7 compared
with b22(A). The straight line isC(A)}A25.92.

FIG. 7. Log-log plot ofN(s)/s for amplitudes 0.17, 0.21, 0.25,
and 0.28. The straight line is the functionN(s)/s}s21.5. The data
points deviate later from the line with increasing amplitude.
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exponent found by Hernandez and Herrmann@6# in their
‘‘model B’’ with the ‘‘relaxed stopping’’ criterion.

Furthermore, it is also evident from Fig. 7 that there m
be two different mechanisms that are operative in the sm
size and in the large size limit, respectively, ofn(s). In the
first limit n(s) is independent of the amplitude of the im
pulse while it is amplitude dependent in the second lim
~Notice that we have not normalized the distributions in F
7. They show the actual number of fragments created in
simulations.! A reasonable explanation for the two differe
mechanisms is, as already pointed out, that fragments cre
by merging of cracks dominate the large size limit ofn(s),
while those created by branching of cracks dominate
small size limit. In this case the size and abundance of
large fragments would strongly depend on the amplitu
through the parameterb in Eqs. ~5! and ~3!, while small
fragments would not depend on the amplitude as
branches are created only after the main impulse has pa
by. As a consequence, the power-law distribution Eq.~6! is
expected to be valid for fragments with linear size sma
than the average distance between nucleated cracks (b),
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while Eq. ~5! should be valid for fragments larger than 1/b.
The fragment area at the point of crossover@C(A)# between
the two regimes obtained from simulations is compared w
1/b2(A) in Fig. 8. The data presented in this figure clea
support the above explanation. It is also interesting to no
that theC(A) of Fig. 8, which gives the scaling range, als
satisfies a power law:C(A)5A25.92.

In summary, we have demonstrated that the basic
tures, apart from branching, of the dynamic crack format
can be understood within a simple model. The growth
cracks is in the direction of propagation dominated by me
ing of cracks, and this causes the length of a crack to g
exponentially with time. The growth of the width of th
cracks is linear with time. The fragment size distributio
follows a scaling law in the small size limit, and there is
crossover to an exponential behavior in the large size lim
The explanation for this behavior seems to be that large fr
ments are created through merging of initially nuclea
cracks, while small fragments are created through branch
processes. The size of the scaling regime is given by a po
law in the amplitude of the impact.
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